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The phonon dispersion relations and density of states under the size confinement effect are crucial in
order either to obtain accurate solutions of the phonon Boltzmann transport equation or to obtain
properly quantum-corrected temperatures for low-dimensional materials. This work draws the confined
phonon properties of silicon nanowires from the equilibrium molecular dynamics simulations. The
simulation results show discrete acoustic phonon modes with smaller group velocities and many
additional modes in the region of large wave numbers and small frequencies, compared to the contin-
uous bulk counterparts. The latter shifts the distribution of phonon density of states toward the lower
frequency. The lattice thermal conductivities of infinitely long silicon wires of diameter 4.1 nm, 7.6 nm,
and 10.6 nm are next calculated using the non-equilibrium molecular dynamics simulations, with
temperatures properly quantum corrected based on the confined phonon density of states. The lattice
thermal conductivities are found to be significantly smaller than the bulk value and depend only weakly
on the temperature, implying that the surface scattering strongly dominates over the phonon—phonon

interaction.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the past two decades, lot of attention has been paid to the
low-dimensional materials because of the demand for miniaturi-
zation of electronic devices and the desired thermal as well as
electric properties for thermoelectric applications [1-3]. It was
realized that low-dimensional materials can possibly result in
a higher power factor because of the size-quantization effects and
electron energy filtering [4,5] and in a lower thermal conductivity
[6—8] as the lattice waves are confined when the characteristic
length scale of the materials is smaller than or comparable to the
phonon mean free path. Among all, the differences in the ther-
moelectric properties between nanowires and bulk materials are
expected to be most substantial due to the large surface-to-volume
ratio of nanowires.

Nanowires are usually prepared in some porous host materials
[9—12]. Experimental measurements of the electric resistance of
the bismuth-in-alumina nanocomposites confirmed the metal-to-
semiconductor transition at a wire diameter about 49 nm [9] and
a significant increase in the Seebeck coefficient when the diameter
is 9 nm [10]. Lee et al. [11] found the composition of Bi—Te nano-
wires can be controlled by the electrodeposition method and the
relaxation time in the pulsed electrodeposition approach. Lin et al.
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[12] proposed the trigonal axis is the most favorable wire orien-
tation for thermoelectric applications based on the band structure
of Bi nanowires and a semiclassical transport model. The thermal
conductivity of individual single crystalline intrinsic Si nanowire
was measured and found to be lower than the bulk value by at least
two orders of magnitude [13]. The prototype thermoelectric device
fabricated by Abramson et al. (2004) [14] comprised of arrays of
silicon nanowires embedded in a polymer matrix. Seol et al. [15]
employed the electron beam lithography to measure the thermo-
power and electrical conductivity of an individual InSb nanowire
grown using a vapor-liquid-solid method (VLS). The measurements
revealed low Seebeck coefficient and high electrical conductivity
compared to those for pure bulk InSb crystals.

While Hicks and Dresselhaus [4,5] proposed using the charac-
teristic length scale of the materials as a new design parameter for
a high power factor, the increase in the figure-of-merit of the low-
dimensional materials is mainly attributed to the large reduction in
the thermal conductivity. Theoretical models for the thermal
conductivity of low-dimensional semiconductors are mostly
built on the phonon Boltzmann transport equation (PBTE) under
the single-relaxation-time approximation and experimentally
measured or theoretically calculated phonon dispersion relations.
Analytical solutions [7,8,16—18] and Monte-Carlo solutions [19—22]
were both attempted. The phonon dispersion relations of low-
dimensional materials are nonetheless different from the bulk ones
due to the size confinement effect and are very hard to measure.
Those predicted according to the continuous elastic models
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Nomenclature
A cross-sectional area of the nanowire, nm?
D(w) phonon density of states, fs
€ polarization direction
h reduced Planck constant, 1.054571628 x 10734 s
k thermal conductivity, W/m K
kg Boltzmann constant, 1.3806503 x 10723 J/K
L, nanowire length, nm
l; position of lattice point, nm
N total number of atoms in the system
n equilibrium phonon distribution
q phonon wave vector, 1/nm
T position of atom i, nm
T temperature, K
Tvp classical temperature, K

t time, fs

v velocity of the atom i, nm/ps
XY,z cartesian coordinates, nm
X,y location of wire axis, nm

Greek symbols

g normal coordinate, nm

Ag amount of energy injected at every time step, meV
At time increment, fs

d width of source/sink region, nm

Openye  Debye temperature, K

) phonon frequency, 1/fs

wp Debye frequency, 1/fs

o characteristic length associated with the two-body

potential, nm

[6—8,16] are incapable of capturing the phonon behaviors near the
boundary of the Brillouin zone. Besides, the elastic models are
isotropic and thus useful only for crystalline materials. To improve
the accuracy of the PBTE solutions, the actual confined phonon
spectra must be incorporated. And this constitutes the motivation
of this work.

The phonon properties of low-dimensional materials can be
best compassed via the molecular dynamics simulations (MD).
Given a proper interatomic potential and the initial positions and
velocities of atoms, MD traces the atomic trajectories by Newton's
second law. Phonon dispersion relations and the phonon density of
states are obtainable by measuring the vibrational motion of atoms
from an equilibrium system and taking advantage of Fourier
transforms [23]. In addition to ameliorating the PBTE solutions,
these confined phonon spectra are also relevant for interpreting the
MD simulation results. Traditionally, one defines the temperature
(Tmp) by equating it to the average atomic kinetic energy divided by
3kp/2, where kg is the Boltzmann constant. This definition fails
nonetheless when the temperature is not high enough (below the
Debye temperature fpepye) to allow all vibrational modes excited. A
quantum correction [14,24—26] thus becomes necessary, which
demands the information of the confined phonon density of states.

The thermal conductivity on the other hand can be calculated
either via the Green-Kubo relation measured from an equilibrium
MD (EMD) simulation or based on the Fourier's conduction law and
the measured temperature gradient and heat flux from a non-
equilibrium MD (NEMD) simulation. A comparison between these
two approaches can be found in the work of Schelling et al. [27]. To
imitate a real system that possesses temperature gradients, we
choose NEMD for calculating the thermal conductivity in the
present study.

In this work, we thus intend to apply the EMD approach to
obtain the confined phonon spectra and apply the NEMD approach
to study the axial thermal conductivity of silicon nanowires. The
Stillinger—Weber (SW) interatomic potential is adopted. To speed
up the computations, a parallel simulation code taking advantage of
the spatial-decomposition technique [28] is developed.

2. Computational methodology

The MD simulations start from a selection of a suitable potential
function to describe the interaction among atoms. Several potential
models have been developed for silicon in the literatures such as
Stillinger—Weber (SW) potential, Tersoff potential, and modified

embedded atoms methods (MEAM). Heino [29] employed MEAM
for silicon thin films. His calculations of the dispersion relations of
bulk silicon didn't agree well with the inelastic-neutron-scattering
measurements [30], except for long acoustic phonons. In this study
we adopt the SW potential because it can accurately predict
experimental measurements of bulk dispersion relations, specific
heats, thermal expansion coefficient, the elastic constants and
melting temperature [27]. The SW potential contains two- and
three-body potentials to maintain the diamond structure of silicon.
The involved parametric values used herein are all extracted from
the work of Schelling et al. (2002) [27].

2.1. EMD and NEMD approaches

Fig. 1 is a schematic diagram of the simulated nanowire, which
has an approximately octagonal cross section and a length of L; in
the z [100] direction. Periodic boundary conditions are imposed in
the z direction and the surface of the nanowire is free. The time
marching is executed via the velocity-verlet method. In an EMD
simulation, the system is initially set at Ty;p = 300 K with a Max-
well—Boltzmann velocity distribution. The simulation is first run
for 30 ps by enforcing the system temperature at 300 K using the
velocity rescaling technique and then for another 30 ps for the
system to reach new equilibrium after the velocity rescaling is
turned off. The time period 30 ps is chosen to ensure the current
autocorrelation coefficient [27] and the velocity autocorrelation
coefficient [23] have both dropped below 1%. The system thus
reaches its thermal equilibrium at the prescribed temperature
(Tymp = 300 K) and statistic samples are not collected until now.

To generate a constant heat flux in the system (a non-equilib-
rium system), we adopt the velocity-rescaling algorithm suggested
by Jund et al. [31]. As shown in Fig. 1, an amount of heat A¢ is added
into the region of thickness é(chosen to be 1.2 nm in this study)
centered at z = L,/4 (source region) and removed from the region
of same thickness centered at z = 3L,/4 (sink region) at every
simulation time step. The system is divided into slices along the z
direction, each having a thickness of 1/4 lattice constant (about
0.14 nm). When the system achieves stationary, a local equilibrium
is also assumed within each slice. The classical temperature is then
calculated based on the temporal average kinetic energy of atoms
within each slice. A quantum correction in a way to be described
later follows immediately. The thermal conductivity is finally
calculated based on the ratio of the temperature gradient and the
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Fig. 1. (a) An illustration of the cross sections of the simulated nanowires (diameter D = 1.6 nm and 4.1 nm); (b) a schematic diagram of the NEMD simulation.

heat current Ae/(2AAt), where At is the time step and A is the cross-
sectional area of the silicon wire.

2.2. Parallel computation

To speed up the calculation of interatomic forces, the Verlet list
and the cell link techniques are both employed herein [32]. More-
over, the tremendously large computational amount is overcome by
developing a spatial-decomposition parallel code. Because atoms in
the solids vibrate only in the neighborhood of their equilibrium
positions, we assign a fixed region of atoms to one processor for
calculation. Data that must be communicated between neighboring
processors is estimated to be within a distance slightly greater than
the maximum displacement of atoms. Shown in Fig. 2 is a two-
dimensional example. The communication is finished by sequen-
tially transferring/receiving data within the prescribed range
to/from the neighboring processors. Our simulation results show
aprescribed range of thickness 1.5¢, 2.60, and 5¢ is sufficiently wide
for bulk, thin film, and wire cases respectively up to 700 K, where &
is the characteristic length associated with the two-body potential.

2.3. Confined phonon spectra and density of states

There are many existing methods for calculating the phonon
dispersion relations, such as by measuring the autocorrelation
function of atomic velocity [29], of the displacement of atomic
vibration [33], or of the atomic position [23]. The first method takes
a much longer time to converge and the other two perform simi-
larly. In the present work, we adopt the last method for simplicity.
In this method, the Fourier transform of the normal coordinate
calculated as

— — — 7
ag(t) = > Ti(t)- €qcos(q- ;) (1)
i
is desired, where T'; is the > instantaneous position of atom i, €qis
the polarization direction, [ ; is the position of the lattice point, and
q is the associated wave vector. It can be shown that the relative

Fourier amplitude of the corresponding characteristic frequency
increases linearly with the simulation time; in other words, the
characteristic frequency becomes more and more apparent as the
simulation time increases [34]. After the system reaches equilib-
rium, the position of one of the two atoms in a basis is averaged for
100,000 time steps (At = 0.3fs) and the result is taken as the lattice
point of this basis. The normal coordinate is then calculated for
every 24fs and a total of 25,000 samples are taken (the highest and
the lowest resolved frequencies are thus 20.8THz and 1.6GHz
respectively).
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Fig. 2. An illustration of the two-dimensional data communication of the processor
i with its neighbors. The grey region indicates the data the processor i owns. The
crossed and slashed regions are the data the processor is going to receive and transfer
respectively.
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Fig. 3. The phonon spectra of bulk silicon (a) and silicon wires of diameter 4.1 nm (b) and 1.6 nm (c).
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The phonon density of states, D(w), on the other hand is
obtained by measuring the velocity autocorrelation function and
taking a cosine Fourier transform [23,33], namely

D(w) = GN/ <Z?i(t+r)-7i(r)>cos(wt)dt/ﬂ<2|7,~2(r)>
0 i i
(2)

where 7’; is the velocity of the atom i, N is the total number of
atoms in the system, w is the phonon frequency, and the angular
bracket represents a temporal average. The correlation value is
calculated for every 3 fs and for a total time period of 3 ps. The time
integration is done by using the fourth-order Simpson method.

3. Results and discussions
3.1. Confined phonon spectra

Shown in Fig. 3 are the calculated spectra of bulk silicon and
silicon wires of diameter 4.1 nm and 1.6 nm and of length 54 nm and
109 nm at Typ; = 300 K. For the bulk dispersion relations, the
system size is 10 nm x 10 nm x 10 nm and periodic boundaries are
used in all three directions. It is seen the simulated bulk spectra
agree very well with the lattice-dynamics calculation [35] and with
the experimental measurement [36,37]. The only difference appears
in the slightly higher frequencies of the simulated optical phonons
and the acoustic phonons near the boundary of the Brillouin zone,
which are both minor for heat conduction due to their much smaller
group velocities. This confirms the accuracy and reliability of the
employed SW potential and related parametric values.

Also shown in Fig. 3 are the longitudinal and transverse disper-
sion relations of the silicon wires along the [100] direction. The
optical branches differ little from the bulk counterparts (black
curves) but seemingly become thicker. Given a wave number,
several peaks are found for the acoustic phonons on the other hand;
the thinner the wire, the larger the frequency gaps are. In addition,
the phonon group velocities of these confined acoustic phonon
modes are obviously much smaller than those of the unconfined
(bulk) ones, particularly at low wave numbers which dominate the
heat conduction in the bulk materials. Furthermore, it is observed
many phonons populate in the region of large wave numbers and
small frequencies, with small or even negative group velocities.
These confinement characteristics all lead to a reduction of the
thermal conductivity.

Fig. 4 shows the calculated phonon density of states of the
silicon wires, compared with the bulk one and that of a silicon thin
film of thickness 4.2 nm. It is seen the peak corresponding to the
optical branch (about 16—17 THz) decreases with decreasing wire
thickness as well as decreasing dimension, compensated by a rising
dip at the frequency = 15THz. The acoustic phonon modes also
shift toward lower frequencies as the wire thickness or the
dimension decreases. This must correlate with the phonon modes
observed in the high-wave-number-and-low-frequency region as
mentioned above. The shift of phonon modes to lower frequency
with decreasing size or dimension may be explained by the
increasing surface-to-volume ratio or the decreasing bonding force
acting on the surface atoms. The modified phonon properties and
the shifted population distribution must change the PBTE solutions
quantitatively.

The confined phonon density of states is also important as far as
the temperature quantum correction is concerned. The corrected
temperature (T) is related to the classical one Typ by
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0010} .
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Fig. 4. The normalized phonon density of states, D/3N.
wWp
3NkgTup = / D(w)[n(w, T) + 1/2]hwdw (3)
0

where n(w,T) = (exp(hw/kgT) — 1) is the equilibrium phonon
distribution and wp is the Debye frequency. Equation (3) equates
the system energy from the quantum description to the simulated
one [26]. Note some previous investigations did not include the
zero-point energy #w/2 in the formula [24,25] in order to have
a null energy at OK like the classical definition. A nearly constant
difference between T and Typ for a given system energy is none-
theless resulted when the temperature is high. Because we are
interested in room-temperature applications, the zero-point
energy is taken into consideration in the present study. The cor-
rected results according to Eq. (3) based on the Debye-model
[24,25], bulk, thin film, and wire densities of states are all shown
together in Fig. 5. As seen, the corrected temperatures based on the
computed densities of states are nearly all the same, regardless of
the dimension and the film/wire thickness (the latter is not shown
herein), except at very low temperature. The difference between
them and the Debye result is however distinguishable. We thus
conclude in performing the temperature quantum correction, the

600

wire (4.1nm)
................ film (4. 4nm)

400 bulk

T(K)

200 =

300 400 300 600
T, K)

Fig. 5. A comparison of the quantum corrected temperatures based on the Debye-
model, bulk, film, and wire phonon densities of states.
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Fig. 6. The temperature distribution along the axis of the silicon wire having a diameter of 7.6 nm and a length of 82 nm with Ag/A = 0.1 meV/nm?. The narrow regions bracketed by

the dotted lines are the energy source and sink regions.

bulk density of states is acceptable for low-dimensional materials
but the Debye-model one is not.

3.2. Axial thermal conductivity

Besides the confined phonon spectra, we also calculate the
thermal conductivity of silicon nanowires in the present study. The
simulation is first run for 55 ps (At = 0.55 fs) by enforcing the whole
system at a prescribed temperature. The energy addition and
extraction mechanism is then actuated and the simulation is run for
another 660 ps for the non-equilibrium system to reach stationary.
Statistical samples are then taken. Fig. 6 shows the averaged
temperature distribution over 990 ps for the silicon wire of diam-
eter 7.6 nm and length 82 nm. Note all the temperatures have been
quantum corrected by using the confined phonon density of states
of the silicon wire. By truncating the nonlinear part of the
temperature distribution (bracketed by the dash dotted lines),
which arises from the strong scattering in the energy source and

0.25
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: A D=7.6 nm
| @ D=4.1nm
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2 015
2 [
g‘ -
2 o
0.05 =
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1/L, (nm™)

Fig. 7. The linear dependence of 1/k on 1/L, at Typ = 400 K.

sink regions, we take the remaining linear part and the imposed
heat flux to calculate the thermal conductivity.

Such a thermal conductivity is however not the thermal
conductivity of an infinitely long wire due to the numerical finite-
size effect; in other words, the wave length of the lattice vibration
that can be excited is limited by the simulated wire length L. To fix
it, we adopt the extrapolation strategy suggested by Schelling et al.
[27]. Based on the belief that the inverse of the thermal conduc-
tivity (k) is linearly related to the inverse of the simulated wire
length, several lengths are first simulated and the thermal
conductivity of the infinitely long wire is then extrapolated by
letting 1/L, — 0. The linear dependence of 1/k on 1/L, is confirmed
in all wires and temperatures simulated herein. Fig. 7 illustrates the
results at Typ = 400 K.

The temperature dependence of the thermal conductivity of
infinitely long silicon wires is now shown in Fig. 8, compared with
that of infinite silicon thin films. It is seen the thermal conductivity

—8— Film(10.9 nm) — 8l — Wire (10.6 nm)
- ——&—— Filn (4.4 nm) — & — Wire (7.6 nm)
—&—  Film(2.2 nm) — & — Wire (4.1 nm)
40
2 |
E
% i
" - —E- -
20 it =
| s
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i - — = —
- .' - ’
0 L ! L 1 L L L 1 L L | ! L L
0 200 400 600 800

(K)

Fig. 8. The temperature dependence of the thermal conductivities of infinitely long
silicon wires compared to those of infinite thin films.
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Fig. 9. The curved axis and radius of the silicon wire of diameter 4.1 nm and length 217 nm at 700 K: (a) a 3D illustration (x:y:z = 1:1:80); (b) top view of (a); (c) the local radius.

decreases with the decreasing film/wire thickness due to the
increasing surface scattering and the reduced phonon group
velocity. Their dependence on the temperature is not strong,
although a little bump can be found carefully. Finally, the thermal
conductivity of the wire is about half that of the thin film for a same
thickness.

The present simulation results are quantitatively different from
those obtained by Ponomareva et al. [38], who investigated the
thermal conductivities of silicon tetrahedral and clathrate nano-
wires with diameters in the range of 1.4—8.3 nm using the NEMD
approach. The thermal conductivity of tetrahedral wires they found
is about 20 W/m K at 300 K. Their wires had a finite length and their
temperatures were not quantum corrected. These might explain
the difference.

At last, it is worth examining the straightness and thickness
uniformity of the simulated wires because these effects can influ-
ence the thermal conductivity as well. We compute the average
cross-sectional coordinates (x,y) of atoms in each slice and define it
as the location of the wire axis at the middle z-coordinate of the

slice. The average projected distance on the x—y plane of the surface
atoms from it is then defined as the local radius of the wire. We
show in Fig. 9 the results of the silicon wire of diameter 4.1 nm and
length 217 nm at 700 K (the thinnest and longest wire at the
highest simulated temperature). To reduce the statistical noise,
a fifteen-point local smoothing has been applied to Fig. 9(a),(b), and
the white curve in Fig. 9(c). The variation in the radius is little
(under 2%) and the deviation of the wire axis from a perfect straight
line is about 10% of the diameter but only 0.2% of the wire length.
The influence of the curved axis on the thermal conductivity is thus
expected to be negligible in all cases studied in the present work.

4. Conclusion

We investigate the confined phonon dispersion relations and
densities of states of silicon nanowires in use of the equilibrium
molecular dynamics approach. These phonon properties are very
important in obtaining accurate solutions of the phonon Boltzmann
transport equation. The simulation results show that, besides discrete
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acoustic phonon modes accompanied with smaller group velocities,
many additional modes are excited in the region of large wave
numbers and small frequencies, resulting in a shifted distribution of
the phonon density of states. This is explained by the decreasing
bonding force acting on the surface atoms. The lattice thermal
conductivities of silicon wires of diameter 4.1 nm, 7.6 nm, and 10.6 nm
are also calculated using the non-equilibrium molecular dynamics
simulation. The temperature quantum correction is done based on
the confined phonon density of states and the extrapolation tech-
nique is employed to eliminate the numerical finite-size error. It is
found the lattice thermal conductivities of silicon nanowires are
largely reduced due to the surface scattering and the confined,
smaller, phonon group velocity and depend only weakly on the
temperature, implying a dominance of the surface scattering over the
phonon—phonon interaction.
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